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Abstract. Two degenerate flavors of quarks are simulated with small masses down to about one fifth of
the strange quark mass by using the two-step multi-boson (TSMB) algorithm. The lattice size is 83 × 16
with lattice spacing about a � 0.27 fm which is not far from the Nt = 4 thermodynamical cross-over
line. Autocorrelations of different physical quantities are estimated as a function of the quark mass. The
eigenvalue spectra of the Wilson–Dirac operator are investigated.

1 Introduction

The question of the computational cost of dynamical
quark simulations is a central issue in lattice gauge the-
ory. Existing unquenched simulations are typically done
in a region where the quarks are not light enough, in most
cases – especially in case of Wilson-type quarks – with
two light quark flavors (u and d) having masses larger
than half the strange quark mass (mud > (1/2)ms). The
physical masses of the u- and d-quarks are so small that in
the foreseeable future simulations can only be carried out
at somewhat higher masses. In order to extrapolate the
results to the physical masses, chiral perturbation theory
based on the low energy chiral effective Lagrangian can
be used. However the systematic errors can only be con-
trolled if the dynamical quark masses in the simulations
are close enough to the physical point. For instance, in
case of partially quenched simulations to determine the
low energy constants in the chiral effective Lagrangian of
QCD we would like to reach at least mud ≤ (1/4)ms [1].

Going to light quark masses in unquenched QCD sim-
ulations is a great challenge for computations because
known algorithms have a substantial slowing down to-
wards small quark masses. The present status has been
recently summarized by the contributors to the panel dis-
cussion at the Berlin lattice conference [2–7]. Inspired by
the results presented there the computational cost of a
simulation with two light quarks will be parametrized in
the present paper as

C = F (r0mπ)−zπ

(
L

a

)zL (r0

a

)za

. (1)

Here r0 is a physical length, for instance the Sommer
scale parameter [8], mπ the pion mass, L the lattice ex-
tension and a the lattice spacing. The powers zπ,L,a and
the overall constant F are empirically determined. The

value of the constant factor F depends on the precise
definition of “cost” [9]. For instance, one can consider
the number of floating point operations in one autocor-
relation length of some important quantity, or the num-
ber of fermion-matrix-vector multiplications necessary for
achieving a given error of a quantity. Of course, the cost
also depends on the particular choice of lattice action and
of the dynamical fermion algorithm which should be op-
timized.

An alternative parameterization can be obtained from
the one in (1) by replacing the powers of r0mπ by those
of mπ/mρ. In fact, the results of the CP-PACS, JLQCD
Collaboration have been presented by Ukawa at the Berlin
lattice conference [6] in this form

CU = FU
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)za

, (2)

FU = 5.9 × 106 flop, (3)
zπρ = 6, zL = 5, za = 2. (4)

Since the determination of the ρ meson mass is difficult for
light quarks when the decay ρ → ππ is allowed, we prefer
the form in (1). Other parameterizations used for Wilson-
type quarks [5,7] are given under the assumption that
zπ = za ≡ zaπ when in (1) the physical length parameter
r0 disappears.

In the present paper we report on the results of ex-
tended test runs with the simple Wilson fermion action
using the two-step multi-boson algorithm [10] in order to
determine the quark mass dependence of the computa-
tional cost of dynamical Monte Carlo simulations with
two light flavors in the region mud ≥ (1/5)ms. For the
definition of the quark mass the dimensionless quantity

Mr ≡ (r0mπ)2 (5)
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is used, which already appears in (1). This is a possible
definition for small quark masses because for mq → 0 the
pion mass behaves as mπ ∝ m

1/2
q . For defining the value

of Mr which corresponds to the strange quark mass one
can use unquenched Nf = 2 lattice data. For instance,
the experimental value of the Ω− baryon mass mΩ− =
1.672 GeV and r0 = 0.5 fm give r0mΩ− = 4.237. Interpo-
lating the CP-PACS results [11] for the ∆ baryon mass
at their largest β value, β = 2.20, between κ = 0.1363
and κ = 0.1368 one can match r0m∆ = 4.237 if their pion
mass is r0mπ � 1.76. This gives for the strange quark
mass Mr,strange � 3.1. Of course, there are also other ways
to estimate Mr,strange which might give slightly different
values. In the present paper, without attempting to re-
ally compute the strange quark mass, we shall stick to the
operational definition

Mr,strange ≡ 3.1. (6)

The Monte Carlo simulations are done near the Nt = 4
thermodynamical cross-over line, that is for a � 0.27 fm.
The lattice size is 83 × 16 implying a physical lattice ex-
tension L � 2.2 fm. Later on we shall also extend our in-
vestigations to 123 × 24 and 163 × 32 lattices. Our present
studies can be considered as complementary to the ones
on larger lattices (closer to the continuum limit) but at
larger quark masses (typically mud ≥ (1/2)ms) [2–7].

In addition to obtaining estimates of autocorrelation
lengths as a function of the quark mass we also performed
a detailed study of the small eigenvalue spectra both for
the hermitean and non-hermitean Wilson–Dirac fermion
matrix. Besides giving important qualitative information
about quark dynamics this also allows one to clear the
issue of the sign problem of the quark determinant. For
an odd number of Wilson-type quark flavors the fermion
determinant can have both signs, because there might be
some eigenvalues (of the non-hermitean fermion matrix)
on the negative real axis. Since for importance sampling
a positive measure is required, the determinant sign can
only be taken into account in a measurement reweighting
step. A strongly fluctuating determinant sign is a potential
danger for the effectiveness of the Monte Carlo simulation
because cancellations can occur resulting in an unaccept-
able increase of statistical errors. We actually study this
question here with two degenerate quark flavors (Nf = 2)
where in the path integral the square of the fermion deter-
minant appears and hence the sign is irrelevant. But our
two quarks are much lighter than the physical s-quark.
Therefore the statistical insignificance of negative eigen-
values in this case hints towards the absence of the sign
problem in the physical case of Nf = 2 + 1 quark fla-
vors, when the sign of the s-quark determinant could, in
principle, cause a problem.

The plan of this paper is as follows: in the next sec-
tion we briefly introduce the parameters of the TSMB
algorithm and give some details of our implementation on
different computers. In Sect. 3 the autocorrelations are in-
vestigated for some basic quantities such as the average
plaquette and the pion mass. Section 4 contains a detailed
study of the small eigenvalue spectra of the fermion ma-

trix. The last section is devoted to discussion and conclu-
sions.

2 The TSMB algorithm

We use in this study the two-step multi-boson (TSMB)
algorithm which has been originally developed for Monte
Carlo simulations of the supersymmetric Yang–Mills the-
ory [10], but that can also be applied more generally [12].

2.1 Algorithmic parameters

TSMB is based on a representation of the fermion deter-
minant in the form

|det(Q)|Nf � 1

det P
(1)
n1 (Q̃2) det P

(2)
n2 (Q̃2)

. (7)

Here Nf denotes the number of fermion flavors and Q is
the fermion matrix, which in the present paper is equal to
the Wilson–Dirac matrix

Qys,xr ≡ δyxδsr (8)

− κ

4∑

µ=1

[
δy,x+µ̂(1 + γµ)Usr,xµ + δy+µ̂,x(1 − γµ)U†

sr,yµ

]
,

with x, y denoting lattice sites, r, s color (triplet) indices,
µ̂ the unit lattice vector in direction µ, Uxµ ∈ SU(3) gauge
link matrices and κ the hopping parameter. The hermitean
Wilson–Dirac fermion matrix is defined as usual by

Q̃ ≡ γ5Q = Q̃†. (9)

The polynomial approximations in (7) satisfy

P (1)
n1

(x) � x−Nf /2,

lim
n2→∞ P (1)

n1
(x)P (2)

n2
(x) = x−Nf /2, x ∈ [ε, λ], (10)

where the interval [ε, λ] covers the spectrum of the squared
hermitean fermion matrix Q̃2 on a typical gauge configura-
tion. The first polynomial P (1) is a crude approximation
with relatively low order. It is used in the multi-boson
representation of fermion determinants [13]. The second
polynomial P (2) is a correction factor which is taken into
account in the gauge field updating by a global accept-
reject step. For this a polynomial approximation of the
inverse square root of P (2) is also needed:

P (3)
n3

(x) � P (2)
n2

(x)−1/2. (11)

The limit n2 → ∞ can be taken in the computed expecta-
tion values if one produces several update sequences with
increasing n2 or, more conveniently, one can keep n2 fixed
at some sufficiently large value for a good approximation
and introduce a further polynomial P (4) satisfying

lim
n4→∞ P (1)

n1
(x)P (2)

n2
(x)P (4)

n4
(x) = x−Nf /2. (12)
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P (4) can be taken into account by reweighting the gauge
configurations during the evaluation of expectation val-
ues. In most cases the order n2 of P

(2)
n2 can be chosen high

enough such that the reweighting correction has a negli-
gible effect on expectation values. In any case the evalua-
tion of the reweighting factors is useful because it shows
whether or not the two-step approximation in (10) is good
enough. For a recent summary of some details of TSMB
and for references see Sect. 3 of [14].

The Monte Carlo integration of the path integral is
performed by averaging over a sequence (Markov chain) of
multi-boson and gauge field configurations. The n1 multi-
boson fields (Φ) and gauge fields (U) are updated in re-
peated update cycles consisting of several sweeps over the
multi-boson fields and gauge field. For the multi-boson
fields we use (local) heatbath and overrelaxation as well
as global quasi-heatbath [15] sweeps. For the gauge field
update heatbath and overrelaxation sweeps are alternated.
After several gauge field sweeps a global Metropolis
accept–reject correction step is performed by the polyno-
mials P (2) and P (3). The update sequence within a cycle
is subject to optimization with the goal to decrease auto-
correlations. We tried several kinds of update sequences
within an update cycle. A typical sequence was 3 Φ-over-
relaxations, 1 Φ-heatbath, 12 U -overrelaxation, global U -
Metropolis, 3 Φ-overrelaxations, 1 Φ-heatbath, 6 U -heat-
bath, global U -Metropolis. In every 10th cycle the first Φ-
overrelaxation–Φ-heatbath combination was replaced by a
global quasi-heatbath.

2.2 Implementation and performance

We have implementations of the updating and measure-
ment programs in TAOmille for the APEmille and in
C++/MPI. The latter implementation is usable on many
different architectures as long as they provide a C++ com-
piler and, in case of parallel computers, support MPI. In
the updating program the computing time is dominated
by the fermion-matrix-vector multiplications (MVMs); 2×
(n2 + n3) of them are needed for the correction step and
O(100 × n1) for the global heatbath and quasi-heatbath
[15]. Altogether they make up 60%–80% of the comput-
ing time. In the most interesting regions of small quark
masses the program is dominated by the MVMs even more
strongly. The same is true for the measurement program,
where smearing and calculation of simple Wilson loops
takes only a few percent of the time. It is therefore of
the utmost importance to improve the performance of
the MVM routines, both preconditioned (for the correc-
tion step and the measurements) and non-preconditioned
(for the global heatbath). This has been done for the
APEmille, the Cray T3E with the KAI C++ compiler,
and for a multi-node Pentium-4 cluster here also exploit-
ing the possibilities of SSE and SSE2 instructions. Re-
sults are given in Table 1. Note that an important fea-
ture of the SSE instructions is that in single precision the
peak performance is doubled compared to double preci-
sion. The performance numbers in Table 1 are substan-
tially influenced by the communication costs among com-

Table 1. Performance of the matrix-vector multiplication in
MFlops and percent relative to peak performance on one board
(8 nodes) on the APEmille and on 8 processors on the T3E and
P4-cluster for a 83 × 16 lattice

APEmille T3E-1200 P4-1700

32 bit 1008 (23.9%) 912 (9.5%) 4322 (7.9%)
64 bit – 712 (7.4%) 2087 (7.7%)

puting nodes. Without communications the numbers both
for APEmille and P4-cluster would be almost a factor of 2
higher. On larger volumes than those considered here com-
munication will have less influence on the performance.

Since the matrix multiplications dominate the comput-
ing time it is reasonable to express e.g. autocorrelations in
units of MVMs. The remaining part of the computation is
given by the local updates. These are composed of parts
which can be essentially thought of as pieces of MVMs,
too. As a result the following approximate formula for the
total amount of MVMs needed for one update cycle is
obtained:

NMVM/cycle � 6(n1NΦ + NU ) + 2(n2 + n3)NC + IGFG.
(13)

Here NΦ is the number of local bosonic sweeps per up-
date cycle, NU the number of local gauge sweeps, NC the
number global Metropolis accept–reject correction steps,
and IG and FG give the number of MVMs and frequency
of the global heatbath.

For data from APEmille and Cray the estimate of the
cost of the local updates obtained from (13) agrees with
the actual costs up to 5%. Therefore the final costs in units
of MVM based on (13) are not much influenced by the ap-
proximation. This is not true for the data presented for the
P4-1700 system, since in this case the matrix multiplica-
tion and the local updates are not treated homogeneously.
Indeed the former is written in assembler using SSE/SSE2
instructions while our code for the local updates is writ-
ten in C++ and compiled with the g++ compiler. As a
result, the estimate for the cost of the local updates is
in this case underestimated by about a factor 3. Still we
take the above formula as a reference when tuning the
parameters because the number of MVMs is more gener-
ally applicable as it does not depend on implementation
details. In addition, in the future the local updates could
be rewritten by using SSE/SSE2 instructions, too, thus
eliminating the non-homogeneity with the MVMs.

It is sometimes interesting to convert the number of
MVMs into the number of floating point operations. On
our 83 × 16 lattice this conversion is approximately

1 MVM � 1.1 × 107 flop. (14)

3 Autocorrelations at small quark masses

The bare parameters of the QCD lattice action with Wil-
son quarks (β for the SU(3) gauge coupling and κ for the
hopping parameter of two degenerate quarks) have to be
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Table 2. Bare couplings, parameters of the TSMB algorithm as defined in Sect. 2.1
and total statistics in 1000 update cycles (Uk) of our runs

Run β κ n1 n2 n3 n4 λ ε Uk

(a) 5.28 0.160 20 40 70 100 2.8 1.75 ×10−2 80
(b) 5.04 0.174 28 90 120 150 3.0 3.75 ×10−3 33
(c) 4.84 0.186 38 190 240 300 3.6 1.44 ×10−3 31
(d) 4.80 0.188 44 240 300 300 3.6 7.2 ×10−4 12
(e) 4.76 0.190 44 360 380 500 3.6 2.7 ×10−4 144
(f) 4.80 0.190 44 360 380 500 3.6 2.7 ×10−4 224
(g) 4.72 0.193 52 600 750 800 3.6 0.9 ×10−4 196
(h) 4.68 0.195 66 900 1200 1100 3.6 3.6 ×10−5 200
(i) 4.64 0.197 72 1200 1500 1400 3.6 1.8 ×10−5 110
(j) 4.64 0.1975 72 1200 1350 1400 4.0 2.0 ×10−5 4

tuned properly in order to obtain the desired parameters
in the Monte Carlo simulations. We are interested in the
quark mass dependence of the simulation cost of hadron
spectroscopy applications; therefore, we want to keep the
physical volume of our lattices sufficiently large and (ap-
proximately) constant. For a 83×16 lattice, a lattice spac-
ing a � 0.27 fm implies a lattice extension of L � 2.2 fm
which is a reasonable starting point for spectroscopy. Pre-
vious Monte Carlo simulations with Nf = 2 Wilson quarks
[16,17] showed that this kind of lattice spacing is realized
near the Nt = 4 and Nt = 6 thermodynamical transi-
tion lines which, therefore, provide a good orientation. We
started our simulations at a relatively large quark mass
on the Nt = 4 transition line and then tuned β and κ to-
wards smaller quark masses keeping r0/a approximately
constant. A summary of simulation points is given in Ta-
ble 2, where some important algorithmic parameters of the
TSMB are also collected.

Most of the runs have been done with 32-bit arith-
metics. Exceptions are run (j) and about 10% of the statis-
tics in run (h) where 64-bit arithmetics was used. In gen-
eral, on the 83 × 16 lattice it is not expected that single
precision makes any difference. In fact, the double preci-
sion results in run (h) were compatible within errors with
the single precision ones.

3.1 Physical quantities

In order to monitor lattice spacing and quark mass one
has to determine some physical quantities containing the
necessary information. As discussed before, we define the
physical distance scale from the value of the Sommer scale
parameter r0. Once r0 in lattice units is known one can
transform any dimensionful quantity, for instance the pion
mass mπ, from lattice to physical units. Therefore a care-
ful determination of r0/a is important. For a dimensionless
quark mass parameter one can use Mr as defined in (5):
Mr = (r0/a × amπ)2. In addition, we also measured some
other quantities like fπ, mρ and another definition of the
quark mass mq for obtaining a broader basis for orienta-
tion. In the next subsections the procedures for extracting
these quantities will be described in detail.

3.1.1 Masses and amplitudes

In order to extract masses and amplitudes we compute
the zero-momentum two-point functions depending on the
time-slice distance (x0 − y0):

CXY (x0 − y0) =
1
Vs

∑

x,y

〈X†(x)Y (y)〉 , (15)

with x ≡ (x0,x) and

X(x) = Y (x) = P5(x) ≡ q̄′(x)γ5q(x)
(CPP (x0 − y0)),

X(x) = Y (x) = A0(x) ≡ q̄′(x)γ5γ0q(x)
(CAA(x0 − y0)),

X(x) = Y (x) = Vi(x) ≡ q̄′(x)γiq(x)
(CViVi(x0 − y0));

we also consider the mixed correlator with

X(x) = A0(x), Y (x) = P5(x) (CAP (x0 − y0)).

Exploiting translation invariance we pick the source y in
(15) at random over the lattice. Taking into account cor-
relations between different time-slices, one sees that this
procedure is optimal for the ratio computational cost/final
statistical error for hadronic observables.

Masses and amplitudes are in general obtained from
the asymptotic behavior of the correlators1:

CXY (T ) =
ξ2
XY

2mp
(e−mpT + (−1)X+Y e−mp(Lt−T )), (16)

ξXY =
√

〈0|X(0)|p〉〈0|Y (0)|p〉, (17)

where |p〉 is the zero-momentum state of the particle as-
sociated with the operators X(x) and Y (x), mp the corre-
sponding mass and (−1)X(Y ) the time-parity of X(Y )(x).
We determine parameters mp and ξXY by global fitting

1 Amplitudes are assumed to be real
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Table 3. Results of runs specified in Table 2 for different physical quantities defined in the text. The
values given in lattice units can be transformed to physical units by canceling the lattice spacing a
with the help of the results for r0/a and using r0 = 2.53 GeV−1

Run r0/a afπ amπ amρ mπ/mρ Mr µr

(a) 1.885(30) 0.3738(50) 1.2089(36) 1.2982(32) 0.9312(17) 5.19(20) 0.498(12)
(b) 1.715(20) 0.4321(23) 1.0428(41) 1.1805(38) 0.8834(14) 3.20(10) 0.305(6)
(c) 1.616(110) 0.4171(47) 0.7886(40) 1.0251(48) 0.7693(32) 1.61(24) 0.148(11)
(d) 1.903(159) 0.4199(75) 0.753(11) 0.999(12) 0.752(11) 2.05(40) 0.155(13)
(e) 1.697(46) 0.4191(20) 0.7151(20) 0.9941(19) 0.7187(16) 1.473(88) 0.1229(41)
(f) 1.739(33) 0.3658(34) 0.5825(34) 0.9089(47) 0.6431(33) 1.026(51) 0.0811(30)
(g) 1.772(41) 0.3791(39) 0.5695(38) 0.9116(33) 0.6256(31) 1.018(61) 0.0770(32)
(h) 1.765(37) 0.3668(54) 0.5088(51) 0.8983(35) 0.5675(42) 0.806(50) 0.0596(27)
(i) 1.812(46) 0.3575(48) 0.4333(48) 0.8616(80) 0.5002(60) 0.616(45) 0.0429(21)
(j) 1.756(128) 0.3377(48) 0.4205(54) 0.859(12) 0.4894(65) 0.545(47) 0.0363(38)

over a range of time-slice distances (after time-symmetri-
zation) T ∈ [Tmin, Lt/2]. We find the optimal value for
Tmin by checking the behavior of the effective local mass
meff(T ). The latter is implicitly defined by the relation

CXY (T )
CXY (T + 1)

(18)

=
e−meff (T )T + (−1)X+Y e−meff (T )(Lt−T )

e−meff (T )(T+1) + (−1)X+Y e−meff (T )(Lt−T−1) .

The value of Tmin is fixed by the onset of the plateau
for meff(T ) as a function of T . The plateau value for the
effective mass is always consistent with the result from the
global fit procedure. The latter gives however the most
precise determination.

A typical problem associated with small quark masses
is a delayed asymptotic behavior for correlators (i.e. a
larger Tmin) resulting in large errors for the hadronic ob-
servables. This problem was solved by applying Jacobi
smearing [18] on both source and sink. Jacobi smearing
was applied in a different context [19,20] in the same situ-
ation of light fermionic degrees of freedom, and it appeared
to improve the overlap of the hadronic operators with the
bound state. Amplitudes and decay constants have been
determined from correlators with local operators.

We determine the pion mass mπ from the asymptotic
behavior of the correlator CPP (T ). From CPP (T ) one can
also extract the amplitude gπ = 〈0|P5(0)|π〉 by identifying
gπ = ξPP . The ρ meson mass mρ is determined from the
asymptotic behavior of the correlator

CV V (T ) =
1
3

3∑

i=1

CViVi(T ). (19)

For the determination of the pion decay constant fπ ≡
m−1

π 〈0|A0(0)|π〉 we apply two different methods. In the
first, the amplitude 〈0|A0(0)|π〉 is obtained by fitting the
asymptotic behavior of the correlator CAA(T ), while the
pion mass is the one coming from CPP (T ). In the second
method [21], we fit the amplitude ratio

rAP =
〈0|A0(0)|π〉
〈0|P5(0)|π〉 (20)

by using the asymptotic behavior

CAP (T )
CPP (T )

= rAP tanh[mπ(Lt/2 − T )], (21)

where mπ is fixed at the best-fit value from CPP (T ). The
determination of fπ is then obtained from the relation

fπ = m−1
π rAP gπ, (22)

using for gπ the determination from CPP (T ). In the region
of large and moderate quark masses the second method
gives by far the most precise determination of fπ. This
is generally no more true for very light quarks where the
data are highly correlated. Here the best determination
was picked from the two different methods on a case-by-
case basis.

Using the above determinations we can extract the
quark mass defined by the PCAC relation

mPCAC
q =

fπ

2gπ
m2

π. (23)

The PCAC quark mass gives us a second definition of the
physical quark mass as an alternative to (5):

µr ≡ r0m
PCAC
q . (24)

We estimated statistical errors on hadron quantities
by applying the Jackknife procedure on blocks of data of
increasing size. The same procedure is applied also for
the Sommer scale parameter (see next subsection). This
method provides us with a definition of the integrated au-
tocorrelation τint of the pion mass. Autocorrelations in
general will be discussed in Sect. 3.2. The results for the
hadronic quantities are listed in Table 3.

3.1.2 Sommer scale parameter

There are several phenomenological models that can be
used to get an estimate for the Sommer scale parameter
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r0 in nature, and most of them point towards a value of
r0 � 0.49 fm. On the lattice r0/a can be calculated from
the static quark potential, which is in turn determined
from Wilson loops. The basic idea is simple, but since we
want to match all our results to this parameter it is crucial
to get a precise determination. To achieve this we follow
the method proposed by Michael and collaborators [22,
23] and some details are found in [24].

Using the variational approach of [25] we get matrices
Wij(r, t) consisting of r × t loops of smeared gauge links,
where our smearing technique of choice is APE-smearing
(the indices i, j label the level of smearing). We use for
our determinations two and six or two, four and six levels
of smearing and symmetrize the matrices Wij . The ratio
staple/link is set to α = 0.45.

From the solutions to

Wij(r, t)φ(r)(k)
j = λ(k)(r; t, t0)Wij(r, t0)φ(r)(k)

j ,

i, j, k = 0, 1(, 2) (25)

one gets the eigenvector φ(r)(0)j for the largest eigenvalue
λ(0)(r; t = t0+1, t0). This equation is solved by transform-
ing it into an ordinary eigenvalue equation, where several
ways are possible:

W (r, t0)−1W (r, t)φ = λφ, (26)
W (r, t)W (r, t0)−1(W (r, t0)φ) = λ(W (r, t0)φ), (27)

W (r, t0)−1/2W (r, t)W (r, t0)−1/2(W (r, t0)1/2φ)

= λ(W (r, t0)1/2φ). (28)

In the literature [25] the third version has been used. How-
ever this can only be done with extremely good statistics.
Otherwise it is possible that, due to statistical fluctua-
tions, the matrix Wij gets negative eigenvalues making
the (real) square root impossible. We checked that the
first two versions give numerically exactly the same re-
sult. For the final determinations we choose the first ver-
sion (26), where one has to be careful about the fact that
W (r, t0)−1W (r, t) has no longer to be symmetric, compli-
cating the calculation of the corresponding eigenvectors.

Once the eigenvector φ(r)(0)j has been obtained, we can
project the matrix Wij to the ground state:

W̃0(r, t) = φ(r)(0)i Wij(r, t)φ(r)(0)j . (29)

This correlator leads to good estimates of the ground state
energy

Ẽ0(r, t) = ln

(
W̃0(r, t)

W̃0(r, t + 1)

)

. (30)

The potential V (r) is estimated by averaging E0(r, t)/t
over time extensions t with t ≥ 1 and weight given by the
Jackknife error. Compared to some other methods this
way of extracting the potential seems to give the most
reliable estimates with smallest error bars.

The Sommer scale parameter is defined in terms of the
potential as

r2
0

dV

dr

∣
∣
∣
∣
r0

= 1.65. (31)

Having a reliable static quark potential we can follow [26]
by fitting the potential to

V (r) = V0 + σr − e

[
1
r

]
(32)

with r = |r| and [1/r] being the tree-level lattice Coulomb
term [

1
r

]
= 4π

∫ π

−π

d3k
(2π)3

cos(k · r)
4
∑3

j=1 sin2(kj/2)
. (33)

Due to the small lattice size we had to drop in (32) the
additional correction term f ×([1/r] − (1/r)), which could
have been used to estimate O(a) effects, fixing e = π/12.
Bringing together the above equations we extract r0 from

r0 =

√
1.65 − e

σ
. (34)

3.2 Autocorrelations

The “cost” of numerical simulations can be expressed in
terms of the necessary number of arithmetic operations for
obtaining during the Monte Carlo update process a new
“independent” gauge field configuration. The real cost can
be then easily calculated once the price of e.g. a floating
point operation is known. For a definition of the indepen-
dence of a new configuration the integrated autocorrelation
τint is used. (For a general reference see [27].) τint does de-
pend on the particular quantity it refers to. Of course, it
is reasonable to choose an “important” quantity as, for
instance, the pion mass but simple averages characteriz-
ing the gauge field such as the plaquette average are also
often considered.

In case of the TSMB algorithm a peculiar feature is
the reweighting step correcting for the imperfection of
polynomial approximations. As will be discussed in the
next subsection, in most of our runs this correction is to-
tally negligible but even in these cases it is important to
perform the reweighting on a small subsample of config-
urations in order to check that the used polynomials are
precise enough. In some cases, especially for very small
quark masses, there are a few exceptional configurations
with small eigenvalues of the squared hermitean fermion
matrix (Q̃2) which are practically removed from statistical
averages by their small reweighting factors. In the calcula-
tion of expectation values these reweighting factors were
always taken into account. For the autocorrelations the
effect of the exceptional configurations is in most cases
negligible.

3.2.1 Integrated autocorrelation of the pion mass

In case of secondary quantities such as the pion mass, or
in general any function of the primary expectation values,
the straightforward definition of the integrated autocorre-
lation τint for primary quantities is not directly applicable.
In fact, there are several possibilities which we shall now
shortly discuss.
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(1) Linearization. As has been proposed by the ALPHA
Collaboration [9], in the limit of high enough statistics the
problem of the error estimate and of the autocorrelation
for secondary quantities can be reduced to considering a
linear combination of primary quantities. Let us denote
the expectation values of a set of primary quantities by
Aα, (α = 1, 2, . . .). Their estimates obtained from a data
sequence are aα. For high statistics the estimates are al-
ready close to the true values: |aα − Aα| � 1. Therefore,
if the secondary quantity is defined by a function f(A) of
primary quantities, we have

f(a) − f(A) �
∑

α

(aα − Aα)
∂f(A)
∂Aα

. (35)

The values of the derivatives are constants; therefore, on
the right hand side there is a linear combination of primary
quantities which can be handled in the same way as the
primary quantities themselves. Since

∂f(A)
∂Aα

� ∂f(A)
∂Aα

∣
∣
∣
∣
A=a

≡ f̄α, (36)

one can consider the linear combinations

Af̄ ≡
∑

α

Aαf̄α, af̄ ≡
∑

α

aαf̄α, (37)

and the variance of the secondary quantity can be esti-
mated as

σ2
f � 〈(af̄ − Af̄ )2

〉
. (38)

(Note that here 〈. . .〉 stands for the expectation value in
an infinite sequence of identical measurements with the
same statistics as the one under consideration.) According
to (38) the integrated autocorrelation of the secondary
quantity can be defined as the integrated autocorrelation
of Af̄ .

This way of obtaining error estimates and autocorre-
lations of secondary quantities is simple and generally ap-
plicable. Let us note that because of the reweighting even
the simplest physical quantities are given by ratios of two
expectation values and are, therefore, secondary quanti-
ties.
(2) Blocking. In case of sufficiently large statistical sam-
ples the integrated autocorrelations of secondary quanti-
ties can also be obtained by comparing statistical fluc-
tuations of data coming from the measurement program
before and after a blocking procedure. The blocking pro-
cedure eliminates for increasing block size the autocor-
relations between data and the final error is the one for
uncorrelated data. Since the latter is the true error of the
measurement, it is appropriate to use this definition of
τint to estimate the real cost of a simulation. In the case
of primary quantities such as the plaquette this definition
coincides with the usual one.

For a generic quantity A one can define σB
n (A) as the

standard deviation of the data at blocking-level n. In the
case of the pion mass, we determine this quantity by ap-
plying the jackknife procedure on the hadron correlators
averaged over blocks of length n. In the limit of infinite

statistics, for increasing n, σB
n (A) should approach after a

transient an asymptotic value corresponding to the stan-
dard deviation of the uncorrelated data σunc(A). For finite
statistics, σB

n (A) fluctuates around σunc(A). We determine
σunc(A) by averaging σB

n (A) over a range of block sizes
n after the transient. The error on this determination is
given by the mean dispersion of data around the average.
Once σunc(A) is given the integrated autocorrelation is
defined by

τint =
1
2

(
σunc(A)
σB

1 (A)

)2

. (39)

Another way of writing the above formula is

Nunc =
Nstat

2τint
(40)

where Nstat is the original statistics and Nunc is the num-
ber of uncorrelated configurations; so 2τint can be thought
of as the distance between two uncorrelated configura-
tions.
(3) Covariance matrix. In most cases it is a good approx-
imation to assume that the probability distribution of the
estimates aα of the primary quantities Aα is Gaussian:

P (a) ∝ exp

{

−1
2

∑

αα′
(aα − Aα) C−1

αα′ (aα′ − Aα′)

}

. (41)

The covariance matrix is

〈(aα − Aα)(aα′ − Aα′)〉 = 〈aαaα′〉 − 〈aα〉〈aα′〉 = Cαα′ .
(42)

The elements of the covariance matrix can be estimated
from the data sequence by determining the integrated au-
tocorrelations τ

(AαAα′ )
int :

Cαα′ � (aαaα′ − aαaα′)
2τ

(AαAα′ )
int

Nstat
. (43)

Once the probability distribution of the estimates P (a) is
known one can obtain an error estimate for any function
of aα by generating a large number of estimates. From the
error it is also possible to obtain an indirect estimate of
the integrated autocorrelation from a formula like (39).

The integrated autocorrelation of the pion mass (and
the error of the pion mass) can be obtained by any of
these three methods and the results are generally consis-
tent with each other. The method based on linearization is
rather robust already at the level of statistics we typically
have. The blocking method becomes easier unstable, espe-
cially for moderate statistics. This is understandable since
the statistics in the individual blocks is reduced compared
to the total sample. The method based on the covariance
matrix needs sufficient statistics in order that the esti-
mate of the covariance matrix be reliable. This is usually
the case for effective masses derived from intermediate dis-
tances but – in our runs – this method sometimes fails for
the largest distances.
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Fig. 1. Correction factors for run
(h) (left panel) and (i) (right panel)

3.2.2 Correction factors

As has been described in Sect. 2.1 a fourth polynomial
P

(4)
n4 can be used to extrapolate to infinite polynomial or-

der, therefore avoiding the need for several simulations
with different orders of the second polynomial P

(2)
n2 . In our

runs the evaluation of the reweighting factors was done in
the way described in detail in [19]. Few smallest eigen-
values λ̃2 of the squared hermitean fermion matrix Q̃2,
typically four, were explicitly determined and the corre-
sponding correction factors were exactly taken into ac-
count. In the subspace orthogonal to the corresponding
eigenvectors a stochastic estimate based on four Gaussian
random vectors was taken. (Note that in the limit of infi-
nite statistics a stochastic estimate always gives a correct
result independently of the number of random vectors; no
systematic error is introduced.)

As stated before, most of our results were obtained
with second polynomials P

(2)
n2 which gave already a good

approximation of the fermionic measure. In this case the
inclusion of the correction factors had nearly no influence
on the final determinations since they were very close to
one. Going to smaller quark masses the smallest eigenvalue
starts to fluctuate more, and it is therefore no longer rea-
sonable to try to use a second polynomial that is good
enough for all cases. Such large fluctuations appeared in
runs (h) and (i). The histograms of reweighting factors
are illustrated by Fig. 1. It turned out that, as expected,
the inclusion of the correction factors had the nice effect
of reducing error bars. This is especially noticeable for
fermionic quantities and in particular the pion mass which
is highly correlated to the smallest eigenvalue.

Nevertheless, even in these cases the effect of reweight-
ing was so small that the individual estimates with correc-
tion factors agreed within error bars with those without
correction factors. As a whole, however, a minor system-
atic increase in the masses could be seen. Both histograms
in Fig. 1 have a tail towards small values which are due to
eigenvalues that could have been further suppressed by a
better second polynomial. As the figure shows, this tail is
more important in run (i) than in run (h). A closer look at

0 5000 10000 15000 20000 25000 30000

1e−07 1e−07

1e−06 1e−06

1e−05 1e−05

0.0001 0.0001

0 5000 10000 15000 20000 25000 30000

1e−07 1e−07

1e−06 1e−06

1e−05 1e−05

0.0001 0.0001

history of smallest eigenvalue on different replica of run (i)

Fig. 2. Histories of the smallest eigenvalue at β = 4.64, κ =
0.197 for two independent lattices. The upper figure shows the
typical case when the smallest eigenvalue stays most of the
time above ε shown by the dashed line. The lower figure is the
history with exceptionally small eigenvalues. The measurement
of physical quantities was started at the vertical line

the smallest eigenvalue histories in run (i) reveals that the
tail near zero was produced by one of the four indepen-
dent parallel lattices when the smallest eigenvalue stayed
for some time below the lower limit of the approximation
interval ε (see Fig. 2).

Configurations with small eigenvalues λ̃2 are interest-
ing because exceptionally small values could indicate
crossing of real eigenvalues of the Wilson–Dirac matrix
Q to the negative axis. This could give a negative sign
for the determinant of a single quark flavor. We systemat-
ically analyzed in all our runs configurations with small λ̃2,
searching for this effect. In the present study we found, for
the first time in a QCD simulation with TSMB, configura-
tions with real negative eigenvalues of the Wilson–Dirac
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Fig. 3. Left panel: Power fit of the plaquette autocorrelation given in units of 106 × MVM as a function of the dimensionless
quark mass parameter Mr. The best fit of the form cMz

r is at c = 7.92(68), z = −2.02(10). Middle panel: The same as a
function of mπ/mρ. In this case the last point is omitted from the fit. The best fit of the form c(mπ/mρ)z is at c = 0.476(77),
z = −6.03(41). Right panel: Power fit of autocorrelation for the smallest eigenvalue of Q̃2 given in units of 106 × MVM as a
function of the dimensionless quark mass parameter Mr. The best fit of the form cMz

r is at c = 5.36(80), z = −1.48(25)

matrix. This happened namely in one run, run (i). The
(three) configurations are however statistically insignifi-
cant, since the corresponding reweighting factors are ex-
tremely small: 2.7× 10−2, 8.2× 10−4 and 3.0× 10−4. Sta-
tistically they represent less than 0.03 configurations in a
sample with a total statistical weight of about 1600.

3.2.3 Results for autocorrelations

The analysis of the runs specified in Table 2 gives the re-
sults for physical quantities collected in Table 3. The inte-
grated autocorrelations, where they could be determined,
are given in Table 4.

The quoted errors of autocorrelations were estimated
in different ways. For the determination of the autocor-
relation of the pion mass we apply the blocking method
explained in Sect. 3.2.1. In general, one has to say that
in some cases our statistics is only marginal for a precise
determination of the integrated autocorrelations. In some
cases (run (a), (j)) we are not able to quote a reliable
result for the autocorrelation of the pion mass.

In the high statistics runs with small quark masses
(e), (f), (g), (h) and (i) we had four independent parallel
update sequences which could be used for a crude estimate
of the errors. In addition, whenever the runs were long
enough, we used binning with increasing bin lengths for
the error estimates.

In general, integrated autocorrelations of the average
plaquette are longest. Those for the smallest eigenvalue
are comparable but sometimes by a factor 2–3 shorter.
The important case of τmπ

int is the most favorable among
the quantities we have considered: it is by a factor 2 to 10
shorter than τplaq

int . Our experience was that the best values
for τmπ

int could be achieved in runs where the lower limit
of the approximation interval ε was at least by a factor
of 2–3 smaller than the typical smallest eigenvalue of Q̃2

Table 4. Integrated autocorrelations in update cycles obtained
from runs specified by Table 2. In the second column Ccycle

gives the number of kMVMs (103 MVMs) per update cycle.
The suffices min, plaq, π8 and mπ refer to the minimal eigen-
value of Q̃2, the average plaquette, the pion correlator at dis-
tance d = 8 and the pion mass, respectively

Run Ccycle τmin
int τplaq

int τπ8
int τmπ

int

(a) 1.49 – 200(20) – –
(b) 2.45 340(60) 350(50) 152(20) 140(20)
(c) 4.35 – 420(80) – 150(20)
(d) 5.05 � 310 490(90) – 170(90)
(e) 7.34 550(110) 490(40) 274(41) 207(33)
(f) 7.31 810(110) 800(90) 367(110) 187(63)
(g) 10.5 320(80) 820(180) 466(62) 188(13)
(h) 16.2 380(120) 940(330) 370(88) 186(40)
(i) 20.4 670(210) 1500(300) 283(67) 153(54)
(j) 17.4 � 390 � 1050 – –

and the multi-boson fields were relatively often updated
by the global quasi-heatbath.

Using the values given in Table 4 one can extract, for
instance, the behavior of τplaq

int as a function of the di-
mensionless quark mass parameter Mr. Since, according
to Table 3, the different runs are at slightly different val-
ues of r0/a, one can correct the points with an assumed
power za = 2 to a common value, say, r0/a = 1.8. The
resulting behavior is shown by Fig. 3 (left panel) where a
two-parameter fit cMz

r is also shown. The best fit is at
c = 7.92(68) (106 MVMs), z = −2.02(10) with a χ2 per
number of degrees of freedom of χ2/d.o.f. = 1.8. (The re-
sult for z remains the same if the common value of r0/a
is changed in the interval 1.6 ≤ r0/a ≤ 2.0.)

The alternative parameterization in (2) suggests a
power fit as a function of mπ/mρ. A good fit can only be



246 F. Farchioni et al.: Numerical simulation tests with light dynamical quarks

obtained in this case if the last point with the largest quark
mass is omitted (see Fig. 3, middle panel). The best-fit
parameters are in this case c = 0.476(77), z = −6.03(41)
with χ2/d.o.f. = 1.1. The obtained power agrees very well
with zπρ = 6 in (2) given by the CP-PACS, JLQCD Col-
laboration although the latter value was obtained in a
range of substantially larger quark masses on large lat-
tices.

The data on the integrated autocorrelation of the small-
est eigenvalues τmin

int typically have larger errors. A fit
of the form cMz

r is shown in Fig. 3 (right panel) where
c = 5.36(80), z = −1.48(25) with χ2/d.o.f = 2.4. A fit
to the integrated autocorrelation of the pion mass τmπ

int
gives similar parameters: c = 1.99(16), z = −1.47(16)
with χ2/d.o.f = 1.7. This shows that for τmin

int and τmπ

int
the quark mass dependence is described by zπ � 3 which
is, of course, more favorable than zπ � 4 for τplaq

int .
Concerning the quality of fits one has to remark that

the different points belong to individually different opti-
mizations of the polynomial parameters which have not
necessarily the same quality. This implies an additional
fluctuation beyond statistics. In view of this the χ2 per
number of degrees of freedom values are reasonably good.

4 Eigenvalue spectra

The eigenvalue spectrum of the Wilson–Dirac matrix is
interesting both physically and from the point of view of
simulation algorithms. From the physical point of view
the low-lying eigenvalues are expected to dominate the
hadron correlators [28,29] and carry information about
the topological content of the background gauge field [30–
32]. Although, as already stressed, in the present work we
consider rather coarse lattices, given the importance of the
question, it is interesting to see the effect of the determi-
nant of light quarks on the qualitative properties of the
eigenvalue spectrum. From the algorithmic point of view
knowledge of the low-lying eigenvalues is crucial for the
optimization of polynomial approximations. Finally, since
we plan to perform simulations with an odd number of
flavors [33], we have to consider the possibility of nega-
tive (real) eigenvalues of the non-hermitean quark matrix
Q, which would imply a negative determinant for a single
quark flavor. For Nf = 2 the square of the determinant is
relevant; therefore, the sign does not matter, but the ab-
sence (or statistical insignificance) of negative eigenvalues
at very small quark masses would strongly support the
assumption that for the heavier strange quark there will
be no problem with the determinant sign.

In order to study the low-lying spectrum of the eigen-
values we used two methods: for the eigenvalues of the
hermitean fermion matrix with small absolute value the
one by Kalkreuther and Simma [34] and for small eigenval-
ues of the non-hermitean matrix the Arnoldi method [35,
36]. The determination of the eigenvalues of the hermitean
matrix is in general much faster. However, the spectrum
of the non-hermitean fermion matrix contains more infor-
mation. First of all, the eigenvalues of Q depend trivially

on the valence hopping parameter κval, because

Q = 1 − κvalD. (44)

This is not true for Q̃. Moreover, because of the symme-
tries

Q† = γ5Qγ5, ODO = −D, (45)

where Oxy = (−1)(x1+x2+x3+x4)δxy, the spectrum of D
is invariant under complex conjugation and sign change.
As a consequence, it is sufficient to compute the low-lying
spectrum of Q at an arbitrary value κval = κ̄val. Other κval
are easily obtained by a shift. The value of κ̄val is chosen
such that it gives the best compromise of computation
time and precision.

It turned out that the application of the Arnoldi al-
gorithm is more efficient on the even–odd preconditioned
matrix Q̄ than on Q itself. The analytic relation between
the eigenvalues of Q̄ and Q can be used to transform the
result back to Q. Indeed if Q is written in the form

Q = 1 − κ

(
0 Deo

Doe 0

)

, (46)

then Q̄ is given by

Q̄ = 1 − κ2

(
0 0
0 DoeDeo

)

. (47)

If v = (ve, vo) is an eigenvector of Q with eigenvalues λ
then it satisfies

(λve, λvo) = (ve − κDeovo, vo − κDoeve) (48)

and hence

(1 − κ2DoeDeo)vo = vo − (1 − λ)2vo = λ(2 − λ)vo. (49)

As a result, the eigenvalues of Q̄ are either 1 (in the even
subspace) or they satisfy

λ̄ = λ(2 − λ). (50)

Because of the symmetries mentioned above, the solutions
of (50) will give precisely all the eigenvalues of the matrix
Q. This relation also gives a possibility to perform a non-
trivial check of the Arnoldi code. (In addition, we also
compared the algorithm with a direct computation of all
the eigenvalues on a small 44 lattice by means of a NAG
library routine.) All checks confirmed the high precision
given as an output by the ARPACK code, which was, in
our cases, always better than 10−4 (relative precision).

4.1 Small eigenvalues

As a first task we computed the low-lying eigenvalues from
sample sets of 10 configurations for runs in decreasing or-
der of quark masses, namely those labeled with (a) and
(c)–(j) in Table 2. In order to have a better access to
the most interesting regions of the spectrum we analyzed
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Fig. 4. Low-lying eigenvalues from a set of O(10) configurations for runs (a), (c) to (j)

each configuration from two different points of view. For
each configuration we first determined the 150 eigenval-
ues of the preconditioned Wilson–Dirac matrix (Q̄) with
smallest modulus and then the 50 eigenvalues of the non-
preconditioned one (Q) with smallest real part.

Both computations were performed at an auxiliary
value of κval = 0.170, where the Arnoldi algorithm per-
formed better. By using the analytical relations (44) and
(50) we transformed the eigenvalues to those of Q at the

κ value of the dynamical updates (κ ≡ κsea). The results
are plotted in Fig. 4. The dashed vertical line shows the
limit for the computation of the eigenvalues with smallest
real part: only the part of the spectrum to the left of this
line is known. In a similar way, by computing the eigenval-
ues with smallest modulus, we have access to the portion
of the spectrum inside the dashed circle. The circle is de-
formed and not centered at the origin because it has been
transformed together with the eigenvalues by using (50).



248 F. Farchioni et al.: Numerical simulation tests with light dynamical quarks

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

β=4.68  
κ=0.195

 Im λ

Re λ 

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

β=4.64   
κ=0.197 

Im λ 

Re λ 
−0.04 −0.035 −0.03 −0.025 −0.02 −0.015 −0.01 −0.005 0 0.005

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Reλ

β=4.64   
κ=0.197 

Im λ 

Fig. 5. Low-lying eigenvalues for a set of 10 configurations with exceptionally small eigenvalues, at β = 4.68 and κ = 0.195
(left panel), β = 4.64 and κ = 0.197 (middle panel), detail (right panel)

In summary, the spectrum is not known in those points
of the complex plane which are both to the right of the
vertical line and outside the circle.

Since the sequence from (a) to (j) corresponds to de-
creasing quark masses it is not a surprise that the eigen-
values have an increasing tendency to go to the left in the
complex plane. At the same time they are pushed away
from zero as an effect of including the fermionic determi-
nant in the path integral measure. At very small quark
masses a pronounced hole near zero is developing. For the
continuum Dirac operator the spectrum is on a vertical
line with some gap near zero. On our coarse lattices there
is an additional horizontal spread of the eigenvalues and
the picture is strongly deformed.

The size of the holes produced by the determinant
is very important if we have in mind the possibility of
computing observables at a partially quenched κval higher
than κsea used in the update. The distance between the
origin and the smallest real eigenvalue determines how
much smaller masses (larger κval) one can reach by par-
tial quenching before encountering exceptional configura-
tions. This question can be answered by studying config-
urations with exceptionally small eigenvalues. Of course,
the reweighting factors discussed in Sect. 3.2.2 have to be
taken into account in this analysis because they suppress
such configurations to a large extent.

4.2 Negative eigenvalues

One of the purposes of the analysis of the eigenvalues was
to determine whether there is a statistically significant
presence of configurations with negative determinant. As
already said, the sign of the determinant is easy to deter-
mine from the low-lying spectrum since it is negative if an
odd number of real negative eigenvalues occurs. In fact,
non-real eigenvalues always appear in conjugate pairs. In
the randomly chosen set of configurations reported above
we did not find a single real negative eigenvalue. However,
a set of O(10) configurations is a rather small subsample.

Additional information on the presence or absence of
negative eigenvalues in our samples is given by the distri-
bution of reweighting factors. Crossing of eigenvalues to
negative real axis implies small reweighting factors corre-
sponding to very small eigenvalues of Q̃2 below the lower
bound of the interval [ε, λ]. The calculation of reweighting
factors, which was carried out on every configuration in
the selected subsamples, is much cheaper than the analy-
sis of small eigenvalues of the non-hermitean matrix Q. As
we discussed in Sect. 3.2.2, the distribution of reweighting
factors is strongly peaked near 1 in all runs, except for
runs (h) and (i) which have high statistics at very small
quark masses (see Fig. 1). In these cases there are a few
configurations with reweighting factors close to zero. In
order to see whether the small reweighting factors (and
the corresponding small eigenvalues of Q̃2) are associated
to negative eigenvalues or not, we concentrated on config-
urations with particularly small eigenvalues of Q̃2.

Note that there is no simple analytical relation be-
tween the lowest eigenvalues of the hermitean and the
non-hermitean matrix, but it is reasonable to expect that
small eigenvalues occur together. This expectation was
confirmed in all cases we investigated. An interesting ob-
servation was that very small eigenvalues of the hermitean
matrix seem to be usually associated to small real eigen-
values of the non-hermitean one. This is compatible with
the fact that real eigenvalues do not need to be double
degenerate and therefore they can afford one to approach
closer to the origin than a complex conjugate pair.

In Fig. 5 two significant examples are reported. The
first set of configurations in the figure corresponds to a
moderately small quark mass (run (h)) and the second to a
very small quark mass (run (i)). In both cases we selected
the configurations with smallest eigenvalues of Q̃2. Even in
this way we could not find a single real negative eigenvalue
for the first run (h). In the second case we found three
configurations with negative eigenvalues. The (in total)
four negative eigenvalues are visible in the detail in the
right panel of Fig. 5. As stated before these configurations
are statistically insignificant.
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Fig. 6. Computation of 8 eigenvalues closest to zero of the hermitean Wilson–Dirac matrix for two configurations from the run
at β = 4.64 and κ = 0.197

Some comments are in order. We have collected strong
evidence that the presence of configurations with negative
determinant is irrelevant at this stage. Of course it is not
yet possible to tell how this picture will evolve on larger
volumes and closer to the continuum limit. It will be nec-
essary to keep monitoring the low part of the spectrum as
we did here. Since, to that purpose, we only need to know
a very small part of the spectrum, there is no reason to
think that this task should become too difficult on large
volumes.

As a last remark we should stress that we performed
this analysis of the sign for very small quark masses. Even
if (partially quenched) chiral perturbation theory is valid
for any combination of the quark masses, it is probably
not worth having an unpaired sea quark with a mass much
smaller than the strange quark. Therefore, provided that
the picture will not dramatically change on larger lattices,
for all physical circumstances it seems very unlikely that
the determinant sign could become a problem.

4.3 Flow of eigenvalues

By using the algorithm of Kalkreuther and Simma [34]
we also explored the flow of the spectrum {λ̃} of the her-
mitean matrix Q̃ for a wide range of valence κ values, going
from zero bare quark mass to a large negative one. This
is interesting in view of simulations of dynamical fermions
with Neuberger’s operator [37], where the inverse square
root of Q̃2 with negative valence mass has to be taken. The
optimal valence mass should be chosen in a region where Q̃
has no eigenvalues extremely close to zero, namely where
a “gap” is opening up in the spectrum near λ̃ = 0. The

results for two typical configurations are plotted in Fig. 6.
For large negative masses we observed many sign changes,
and the eigenvalue with smallest absolute value is always
close to zero. It seems that for dynamical Wilson fermions
on our coarse lattice there is no gap-opening near λ̃ = 0.

A possible application of the eigenvalue flow is to mon-
itor the number of negative eigenvalues at κ = κsea [38,
19]. This is substantially cheaper than the analysis of the
spectrum of the non-hermitean matrix Q by the Arnoldi
method. For instance, observing the eigenvalue flow one
can easily exclude the absence of negative eigenvalues if
there is no crossing of zero in the flow below κsea – which
is the typical case. A more detailed (and more expensive)
analysis can be restricted to the rare case when a crossing
occurs.

5 Discussion

Our runs on 83×16 lattices with a lattice spacing of about
a � 0.27 fm for Nf = 2 degenerate quarks display the de-
pendence of simulation costs on the quark mass. Assuming
the parameterization in (1) with zL = 5 and za = 2, from
the integrated autocorrelation of the average plaquette we
obtain

zπ � 4, F � 0.8 × 109 flop. (51)

The power for the quark mass dependence zπ comes out
smaller than zπρ = 6 in the form (2) quoted by the CP-
PACS, JLQCD Collaboration [6] but if we omit the point
with largest quark mass and perform a fit with the para-
metrization (2), we also obtain zπρ � 6 (see Fig. 3).

As shown by Fig. 3 (left panel), our data on the inte-
grated autocorrelation of the average plaquette are well
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fitted by zπ = 4 in the whole range 0.6 ≤ Mr ≤ 6 which
approximately corresponds to (1/5)ms ≤ mud ≤ 2ms.
The data on the integrated autocorrelation of the small-
est eigenvalue of the squared hermitean fermion matrix
show an even weaker power zπ � 3, but there the errors
are larger and the fit is less convincing (see right panel
in Fig. 3). The pion mass has the shortest autocorrela-
tion; this also shows a power zπ � 3. zπ = 4 corresponds
to a behavior proportional to the inverse square of the
quark mass. Qualitatively speaking, according to Table 4,
one inverse quark mass power is due to the increase of
the condition number of the fermion matrix and another
inverse power comes from the increase of the autocorre-
lation in numbers of update cycles. Note that because of
(r0mπ)2 ∝ (r0mq) the case of zπ = 4, za = 2 corresponds
to a situation when the scale parameter r0 cancels in the
cost formula (1).

The overall factor F given in (51) is such that for our
second smallest quark mass Mr � 0.6 (run (i)) the cost in
floating point operations turns out to be C � 2.3 × 1014.
As Table 4 shows, considering instead of the integrated
autocorrelation of the average plaquette the one of the
pion mass, the result is C � 0.4×1014. The parameters in
(2) give the same number. The other estimates for Wilson-
type quarks in [5] and [7] in this point are CL � 0.2×1014

and CW � 1.1 × 1014, respectively. Taking into account
that the numbers CU,L,W have been obtained under rather
different circumstances concerning simulation algorithm,
autocorrelations considered, quark mass range, lattice size
and even lattice action, there is a surprisingly good order
of magnitude agreement.

It is remarkable that in a rather broad range of quark
masses (1/5)ms ≤ mud ≤ ms (leaving out the point at
mud � 2ms) two fits with zπ = 4 and zπρ = 6 work
equally well (Fig. 3). This implies in this range of quark
masses a peculiar dependence of mπ/mρ on Mr (see Fig. 7,
where the relation between the two different quark mass
parameters µr and Mr is also shown). However, the two
parameterizations in (1) and (2) cannot be both correct
in the vicinity of zero quark mass because there the two
powers have to be equal: zπρ = zπ. Putting it differently,
the extrapolations of the two fits below mud = (1/5)ms

are different. The fit with zπρ = 6 gives a more dramatic
slowing down near zero quark mass than the one with
zπ = 4. The real asymptotics near mud = 0 could be
disentangled by going to still smaller quark masses. With
TSMB there is no serious obstacle for doing this – except
for the increase in necessary computer time.

The value of the lattice spacing in this paper is chosen
rather large in order to limit the computational costs for
these tests. Our aim was to concentrate on the quark mass
dependence in the range of light quarks. Further studies
will be needed for investigating the cost as a function of
the lattice spacing (in particular, the value of the expo-
nent za) for smaller values of a. In this respect the expe-
rience of the DESY–Münster–Roma Collaboration in the
supersymmetric Yang–Mills theory at much smaller lattice
spacings (a � 0.06fm) [19,20] shows already that TSMB
has a decent behavior also closer to the continuum limit.
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Fig. 7. The dependence of (mπ/mρ)2 on Mr according to
Table 3 (right values). The values of µr are also shown (left)
together with a linear fit (dashed line)

Besides the quark mass dependence of simulation costs,
the other interesting question we investigated in this paper
is the distribution of the small eigenvalues of the fermion
matrix and, in particular, the existence of negative fermion
determinants of a single quark flavor. Our data show that
the effect of the fermion determinant is rather explicit be-
cause of the strong suppression of the eigenvalue density
near zero (see Figs. 4–5). The statistical weight of configu-
rations with negative determinant is negligible even at our
smallest quark masses. In fact after an extensive analysis
we only found three configurations with negative determi-
nant at our second smallest quark mass Mr � 0.6 (run
(i)) and none of them at other quark masses. Taking into
account the small reweighting factors of the configurations
with negative determinant, their relative statistical weight
is O(10−5).

It is clear that it would be important to check the vol-
ume dependence of our results, both for simulation costs
and small eigenvalues, on larger lattices and closer to the
continuum limit. We plan to do this in the future.
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